Penerapan Clustering dalam Data Science Untuk Mengembangkan Keterampilan Analitik di SMK Media Informatika

Authors

  • Eliyani Universitas Mercu Buana
  • Muhammad Rifqi Universitas Mercu Buana
  • Saruni Dwiasnati Universitas Mercu Buana

DOI:

https://doi.org/10.70340/japamas.v3i1.132

Keywords:

Clustering, Data Science, Vocational school

Abstract

The current and future job market requires a workforce skilled in data science, including analytical techniques such as clustering. With the development of Industry 4.0, skills in data analysis are becoming increasingly important, and education must adapt to meet this need. Increasing data literacy among vocational school students is very important to prepare them to face a world increasingly dominated by data. Analytical skills help students in solving complex problems and making data-driven decisions. Skills in data science encourage innovation and creativity in various fields. Involvement of students so they can use tools and skills to analyze and understand the world around them through data. Clustering is a technique in data science and statistics that is used to group objects or data points that have similar characteristics into groups or clusters. Objective: To equip students with the skills to analyze and interpret data effectively using clustering techniques and provide a strong foundation for students who are interested in continuing their studies in the field of data science or information technology.

Downloads

Download data is not yet available.

References

. Harkut, Dinesh G, Kashmira Kasat, and Vaishnavi D Harkut. 2019. “Artificial Intelligence.” In Chapter, IntechOpen, 1–5. https://www.intechopen.com/chapters/66147.

. Sowmya, R., Suneetha, K.,R " Data Mining with Big Data". International Conference on Intelligent Systems and Control (ISCO) Vol 10, pp.1109, Februari 2017.

. D. Diy, “Analisis Data Mining Untuk Memprediksi Lama Perawatan Pasien Covid-19 Bianglala Informatika,” vol. 10, no. 1, pp. 21–29, 2022.

. S. Hendrian, “Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Fakt. Exacta, vol. 11, no. 3, pp. 266–274, 2018, doi: 10.30998/faktorexacta.v11i3.2777

. Alam Jusia, P., Muhammad Irfan, F., & Dinamika Bangsa Jambi Jl Jend Sudirman Thehok Jambi, S. (2019). Clustering Data Untuk Rekomendasi Penentuan Jurusan Perguruan Tinggi Menggunakan Metode K-Means. Jurnal IKRA-ITH Informatika, 3(3), 75.

. Slamet, S., Pratikno, H., dan Maulana Y. M., “Workshop JARKOM Berbasis CISCO dan MIKROTIK untuk Persiapan Uji Kompetensi Keahlian (UKK) bagi Guru dan Murid di SMK KARTIKA 1 Surabaya.”Share: Journal of Service Learning, 2021, 7(1), 1-7.

. Margasari, N, Sholikhah, Z., Andhini, M. M., Fitrianna, H., “Peningkatan Literasi Digital untuk MembentukJiwa Student-preneurship pada Siswa Sekolah Menengah Atas (SMA) di Yogyakarta,” Darma Sabha Cendekia, 2020, 2(2), 32-39.

. Hiran, Kamal Kant, Deepak Khazanchi, Ajay Kumar Vyas, and Sanjeevikumar Padmanaban. 2021. Machine Learning for Sustainable Development. eds. Kamal Kant Hiran, Deepak Khazanchi, Ajay Kumar Vyas, and Sanjeevikumar Padmanaban. De Gruyter

. Cecep Abdul Cholik. Perkembangan Teknologi Informasi Komunikasi / ICT Dalam Berbagai Bidang. Jurnal Fakultas Teknik. e-ISSN:2746-220X. p-ISSN: 2746-1209 Vol. 2 No. 2 Mei 2021.

. Dedy Hartama. 2018. Analisa Visualisasi Data Akademik Menggunakan Tableau Big Data. Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK). Volume (3). Juli 2018, pp 46-55

. Anggriawan, I., & Gunawan, W. (2022). Implementation of Data Mining Using K-Means Algorithm for Bicycle Sales Prediction. ILKOM Jurnal Ilmiah, 14(3), 284–293. https://doi.org/10.33096/ilkom.v14i3.1291.284-293

Downloads

Published

2024-06-30

Issue

Section

Articles