Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food

Authors

  • Lutfhia Azzahra universitas dharmawangsa
  • Amru Yasir Universitas Dharmawangsa

DOI:

https://doi.org/10.70340/jirsi.v3i1.88

Abstract

The creation of many businesses in the field of online-based sales or known as e-commerce is proof that internet technology is currently developing so rapidly in various industries, including business. Online shop is a business activity that uses E-Commerce in its marketing or trading operations. Knowing how interested consumers are in buying a product can be done by counting the number of sales transactions made, which is one of the information that can be collected. So that the increasing number of transaction activities by consumers there is very large and out of data. The results of this study indicate that the mostoptimal number of clusters is two clusters. From 45 frozen food product data, 3 frozen food products were found in cluster 1 and 42 frozen food products entered cluster 2. This study aims to apply the k- means clustering method in grouping frozen food sales to find out the grouping of consumer interest in a product. Frozen food. It is hoped that this research can be useful for the company and as a reference for further research.

Downloads

Download data is not yet available.

References

Herlinda, V., Darwis, D., & Dartono. (2021). Analisis Clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 94-99.

Kamila, I., Khairunnisa, U., & Mustakim. (2019). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau. Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, 5(1), 119 - 125.

Larose, D. T. 2005. Discovering Knowledge In Data: An Introduction To Data Mining. JhonWilley & Sons, Inc.Kusrini & Luthfi, E. T. 2009. Algoritma Data Mining. Yogyakarta: Andi

Luthfi, M. A., & Nilogiri, A. (2019). Implementasi Algoritma K-Means Clustering Untuk Pengelompokan Minat Konsumen Pada Produk Online Shop. Universitas Muhammadiyah Jember, 1-5.

Mulyati, S. (2015). Penerapan Data Mining dengan Metode Clustering untuk Pengelompokan Data Pengiriman Burung. Seminar Ilmiah Nasional Teknologi Komputer. 30-35.

Nasari, F., & Darma, S. (2015). Penerapan K-Means Clustering pada Data Penerimaan Mahasiswa Baru (Studi Kasus: Universitas Potensi Utama). Seminar Teknologi Informasi dan Multi Media 2015 (pp. 73-78). Yogyakarta: STMIK AMIKOM.

Nasution, S. A., Poningsih, & Okprana, H. (2021). Penerapan Algoritma K-Means Pada Penjualan Frozen Food Pada UD Soise Sosis Pematangsiantar. Jurnal Sistem Komputer dan Informatika (JSON), 2(2), 171-177.

Piatetsky, G. & Shapiro. 2006. An Introduction Machine Learning, data mining, and Knowledge discovery, Course in data mining Kdnuggets.

Rohmawati, N., Defiyanti, S., & Jajuli, M. (2015). Implementasi Algoritma K-MEANS dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jurnal Ilmiah Teknologi Informasi Terapan, 1(2), 62-67.

Silahi, M. (2018). Analisis Clustering Menggunakan Algoritma K-Means Terhadap Penjualan Produk Padapt Batamas Niaga Jaya. Computer Based Information System Journal, 6(2), 20-34.

Downloads

Published

2024-01-28