Prediksi Harga Daging Sapi Berbasis Website Menggunakan Metode Regresi Linear Berganda

Authors

  • Rio Setiawan Universitas Malikussaleh
  • Ajuirai Ajuirai Universitas Malikussaleh
  • Rifqy Azka R Universitas Malikussaleh
  • Arnawan Hasibuan Universitas Malikussaleh
  • Rizky Putra Fhonna Universitas Malikussaleh

DOI:

https://doi.org/10.70340/jirsi.v4i3.223

Keywords:

Price Prediction, Beef, Multiple Linear Regression, Website

Abstract

Beef prices in the market tend to experience unpredictable changes influenced by various factors, such as consumer demand and feed costs. This instability can make it difficult for business actors and farmers to determine the right pricing strategy. This study aims to build a beef price prediction system using the multiple linear regression method with input variables in the form of the amount of demand and feed costs. Data were obtained from the National Food Price Panel and processed using a statistical approach to form a predictive model. The Root Mean Square Error (RMSE) value is used as an indicator of model accuracy. The model results are then implemented into a website-based application using the PHP programming language and MySQL database. This application allows users to enter input data and get real-time price prediction results. With this system, it is expected to help farmers, traders, and policy makers in making more accurate and efficient decisions based on historical data. This system can also be further developed by adding other related variables to increase the level of accuracy of beef price predictions.

Downloads

Download data is not yet available.

References

Y. K. Khotimah and A. N. Ulfa, “Permintaan Daging Sapi di Indonesia Pada Pandemic Covid-19,” vol. 4, no. 1, pp. 33–39, 2022.

D. Sapi, D. I. Provinsi, and D. K. I. Jakarta, “ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PERMINTAAN DAGING SAPI DI PROVINSI DKI JAKARTA,” vol. 11, no. 2, pp. 21–31, 2023.

U. K. Indonesia, U. K. Indonesia, R. Planning, and U. K. Indonesia, “APPLICATION OF DATA MINING FOR PREDICTING HORTICULTURAL COMMODITIES PRICE,” vol. 19, no. 1, pp. 163–175, 2024.

C. R. Yulianto, M. D. Nurcahyo, and P. Sari, “Implementasi Regresi Linear untuk Memprediksi Harga Emas Batangan,” vol. 4, no. 1, pp. 335–342, 2025, doi: 10.31284/p.semtik.2025-1.6979.

A. L. Elizabeth, D. R. Manalu, and M. Yohanna, “PREDIKSI HARGA KELAPA SAWIT MENGGUNAKAN METODE REGRESI LINEAR BERGANDA ( Studi Kasus PT . Bakrie Sumatera Plantations , Tbk ),” vol. 8, no. 1, pp. 89–95, 2024.

D. N. Hidayat, A. Pujiati, and D. M. Nihayah, “Analisis Elastisitas Faktor-Faktor yang Mempengaruhi Permintaan Daging Sapi,” vol. 4, no. 2, pp. 97–105, 2024.

R. Akmal, T. A. Putri, N. Farmayanti, dan T. Sarianti, “Struktur Biaya dan Pendapatan Usahaternak Pembibitan Sapi Potong di Desa Palon, Kecamatan Jepon, Kabupaten Blora,” J. Ilm. Agribisnis, vol. 8, no. 6, pp. 467–477, Des. 2023..

S. Ferdinandus, I. H. Wowor, M. Kom, A. S. M. Lumenta, and M. T. A. Rumagit, “Perancangan Aplikasi Surat Masuk Dan Surat Keluar Pada PT . PLN ( Persero ) Wilayah Suluttenggo,” pp. 1–7.

R. Suryadi, A. Pratama, R. P. Phonna, S. Informasi, U. Malikussaleh, and A. Utara, “SISTEM INFORMASI MANAJEMEN PERBENGKELAN BERBASIS WEB DAN ANDROID STUDI KASUS DI,” pp. 37–58.

M. A. Hafizh et al., “Perancangan Media Pelatihan Digital Marketing Untuk Peningkatan UMKM Berbasis Website,” pp. 155–169, 2025

Downloads

Published

2025-09-30