Penerapan Model Machine Learning Algoritma Gradient Boosting dan Linear Regression Melakukan Prediksi Harga Kendaraan Bekas
DOI:
https://doi.org/10.70340/jirsi.v2i2.56Keywords:
Prediction, Algorithm, Gradient BoostingAbstract
The increase in the number of new car releases coupled with the increasingly massive advertisements about the latest cars in the city of Medan, makes consumers or the public more interested and encouraged to be able to exchange (sell) their cars and replace them with the latest cars, so this creates used cars that are still suitable for use to be re-sold and bought to other consumers so that it makes the marketing of used cars very large. This is proven by the large number of requests for used car purchases in the city of Medan to meet their needs for four-wheeled vehicles. Used vehicles, especially 4-wheeled vehicles, have varying prices and are always different from one seller to another, which causes confusion for buyers about used car prices. To overcome this problem, the authors use data mining techniques to predict used vehicles, especially 4-wheeled vehicles. The results applied are make predictions using the gradient boosting algorithm and the linear regression algorithm which produces used car predictions.
Downloads
References
Butsianto, S., & Mayangwulan, N. T. (2020). Penerapan Data Mining Untuk Prediksi Penjualan Mobil Menggunakan Metode K-Means Clustering. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 3(3), 187–201. https://doi.org/10.32672/jnkti.v3i3.2428
Kriswantara, B., Kurniawati, K., & Pardede, H. F. (2021). Prediksi Harga Mobil Bekas dengan Machine Learning. Syntax Literate; Jurnal Ilmiah Indonesia, 6(5), 2100–2110.
Nugraha, F. A., Harani, N. H., & Habibi, R. (2020). Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Kreatif.
Salsabila, S. E. (2020). Model Prediksi Penjualan Multi-Item Time Series Berbasis Machine Learning Menggunakan Metode Autoregressive Integrated Moving Average Dan Long Short-Term Memory Pada Produk Perishable (Studi Kasus: Retail Sayur Tosaga).
Zahara, S., Sugianto, & M. Bahril Ilmiddafiq. (2019). Prediksi Indeks Harga Konsumen Menggunakan Metode Long Short Term Memory (LSTM) Berbasis Cloud Computing. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 357–363. https://doi.org/10.29207/resti.v3i3.1086
Wang, X., Xu, J., Shi, W., & Liu, J. (2019). OGRU: An optimized gated recurrent unit neural network. Journal of Physics: Conference Series, 1325(1), 12089.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Leriansyah Putra Nasyuli, Imran Lubis, Andi Marwan Elhanafi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.