Meningkatkan Akurasi KNN Menggunakan Metode Particle Swarm Optimization pada Klasifikasi Kualitas Buah Apel
DOI:
https://doi.org/10.70340/jirsi.v4i1.173Keywords:
Quality, Apel, Classification, KNN, PSOAbstract
Apple quality is a crucial aspect in the agriculture and food processing industry, quality assessment is essential to meet consumer standards and ensure customer satisfaction. This research explores the use of K-nearest Neighbor (KNN) algorithm optimized with Particle Swarm Optimization (PSO) for apple quality classification based on the attributes of size, weight, sweetness, crispness, juiciness, ripeness, and acidity. The dataset used contains 4000 apple samples that have been measured and evaluated based on these attributes. The results showed that setting the population size and inertia weights in the PSO algorithm successfully optimized the performance of KNN in apple quality classification. The combination of population size and inertia weight in the PSO algorithm can increase KNN's accuracy to 91.15% with a recall value of 89.53% and precision of 92.59%. This research also has a better accuracy value than previous research on apple quality classification.
Downloads
References
F. Indra Pratama, A. P. Wijaya, H. Pratiwi, and A. Budianita, “Klasifikasi Kematangan Buah Apel Berdasarkan Warna Dan Tekstur Menggunakan Algoritma K-Nearest Neighbor,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 5, no. 1, pp. 11–18, 2023, doi: 10.46772/intech.v5i1.1119.
R. Chowdhury, R. Das, F. B. Faruk Ananna, A. Saha, S. Nawar, and M. H. Hosen, “Unveiling Predictive Factors in Apple Quality: Leveraging LIME, SHAP, and the Synergy of Machine Learning Models and Artificial Neural Networks,” Proc. - 6th Int. Conf. Electr. Eng. Inf. Commun. Technol. ICEEICT 2024, no. May, pp. 1026–1031, 2024, doi: 10.1109/ICEEICT62016.2024.10534426.
Christian Iwan, Christvaldo Kurnia Putra, Dianeluoxy Zabdi, Elson Ivan Boy, Monica Agustina Chandra, and Lifia Yola Febrianti, “Analisis Pemanfaatan Artificial Intelligence Dalam Membantu Proses Perekrutan Karyawan Perusahaan,” J. Sains dan Teknol., vol. 2, no. 2, pp. 161–168, 2023, doi: 10.58169/saintek.v2i2.248.
A. Wibowo, L. Lusiana, and T. K. Dewi, “Implementasi Algoritma Deep Learning You Only Look Once (YOLOv5) Untuk Deteksi Buah Segar Dan Busuk,” Paspalum J. Ilm. Pertan., vol. 11, no. 1, p. 123, 2023, doi: 10.35138/paspalum.v11i1.489.
T. Dwi Antoko, M. Azhar Ridani, and A. Eko Minarno, “Klasifikasi Buah Zaitun Menggunakan Convolution Neural Network,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 119–126, 2021, doi: 10.34010/komputika.v10i2.4475.
C. Suryanti and M. G. Rohman, “Klasifikasi Kualitas Buah Apel Berdasarkan Warna dan Bentuk Menggunakan Metode KNN,” Gener. J., vol. 8, no. 1, pp. 34–41, 2024, doi: 10.29407/gj.v8i1.21052.
R. A. Safitri, S. Nurdiani, D. Riana, and S. Hadianti, “Klasifikasi Jenis Buah Apel Menggunakan Metode Orde 1 dengan Algoritma Multi Support-Vector Machines,” Paradig. - J. Komput. dan Inform., vol. 21, no. 2, pp. 167–172, 2019, doi: 10.31294/p.v21i2.6526.
P. Astuti, “Klasifikasi Kualitas Buah Apel Dengan Algoritma K-Nearest Neighbor (K-NN) Menggunakan Bahasa Pemrograman Python,” Comput. Sci., vol. 4, no. 2, pp. 127–132, 2024, doi: 10.31294/coscience.v4i2.3328.
Y. Kustiyaningsih and N. Syafa’ah, “Sistem Pendukung Keputusan Untuk Menentukan,” J. Istek, vol. VI, no. 1, pp. 40–42, 2020.
A. P. Permana, K. Ainiyah, and K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 3, pp. 178–188, 2021, doi: 10.14421/jiska.2021.6.3.178-188.
S. D. Mayanglambam, R. Pamula, and S. J. Horng, “Clustering-Based Outlier Detection Technique Using PSO-KNN,” J. Appl. Sci. Eng., vol. 26, no. 12, pp. 1703–1721, 2023, doi: 10.6180/jase.202312_26(12).0003.
S. W. Fei, “The Hybrid Method of VMD-PSR-SVD and Improved Binary PSO-KNN for Fault Diagnosis of Bearing,” Shock Vib., vol. 2019, pp. 1–7, 2019, doi: 10.1155/2019/4954920.
J. Han, “The Method for Identifying Employees’ Emotions in Adverse States Incorporating PSO-kNN Algorithm and Multiple Physiological Parameters,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/4371162.
S. Wu, “Simulation of classroom student behavior recognition based on PSO-kNN algorithm and emotional image processing,” J. Intell. Fuzzy Syst., vol. 40, no. 4, pp. 7273–7283, 2021, doi: 10.3233/JIFS-189553.
A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Population size in Particle Swarm Optimization,” Swarm Evol. Comput., vol. 58, no. May, p. 100718, 2020, doi: 10.1016/j.swevo.2020.100718.
M. Murinto, A. Prahara, and E. I. H. Ujianto, “Multilevel Thresholding Segmentasi Citra Warna Menggunakan Logarithmic Decreasing Inertia Weight Particle Swarm Optimization,” Sainteks, vol. 19, no. 1, p. 13, 2022, doi: 10.30595/sainteks.v19i1.13295.
H. Gultom, “Data-Data Yang Digunakan Dalam Proses Asuhan Keperawatan Dan Metode Pengumpulan Data,” OSF Prepr., pp. 1–7, 2020.
M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 393–399, 2021, doi: 10.29207/resti.v5i2.3008.
LOUIS MADAERDO SOTARJUA and DIAN BUDHI SANTOSO, “Perbandingan Algoritma Knn, Decision Tree,*Dan Random*Forest Pada Data Imbalanced Class Untuk Klasifikasi Promosi Karyawan,” J. INSTEK (Informatika Sains dan Teknol., vol. 7, no. 2, pp. 192–200, 2022, doi: 10.24252/instek.v7i2.31385.
S. Setianingsih, M. U. Chasanah, Y. I. Kurniawan, and L. Afuan, “Implementation of Particle Swarm Optimization in K-Nearest Neighbor Algorithm As Optimization Hepatitis C Classification,” J. Tek. Inform., vol. 4, no. 2, pp. 457–465, 2023, doi: 10.52436/1.jutif.2023.4.2.980.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.
H. Harafani, “Support Vector Machine Parameter Optimization to Improve Liver Disease Estimation with Genetic Algorithm,” SinkrOn, vol. 4, no. 2, p. 106, 2020, doi: 10.33395/sinkron.v4i2.10524.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mutiara Mega Amelia, Hani Harafani, Muhammad Rafa Maarif, Bintang Maulana Fazrin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.