Implementation of Data Mining on Froozen Food Sales Results Using K Means Clustering

Authors

  • Nenna Irsa Syahputri Universitas Harapan Medan
  • Siti Sundari Universitas Harapan Medan
  • Rismayanti Universitas Harapan Medan

DOI:

https://doi.org/10.70340/jirsi.v2i2.54

Keywords:

Data mining, K Means algorithm

Abstract

Maintaining inventory stock so that there are no empty items is one way to maintain customer satisfaction. In today's competitive business world, we are required to always develop our business in order to survive in the competition, especially in sales competition, it requires entrepreneurs to find a pattern that can increase sales and marketing within the company, one of which is by utilizing sales data. Applying clustering data mining techniques so that it can help NCekma Frozen stores in determining strategies for determining frozen food stocks using the K Means algorithm.

 

Downloads

Download data is not yet available.

References

Siregar, M. H. (2018). Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan). Jurnal Teknologi Dan Open Source, 1(2), 83–91. https://doi.org/10.36378/jtos.v1i2.24.

Metisen, B. M., & Sari, H. L. (2015). Analisis Clustering Menggunakan Metode K-Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila. J. Media Infotama, vol. 11, pp. 110-118.

Rohmawati, N., Defiyanti, S., & Jajuli, M. (2015). Implementasi Algoritma K-MEANS dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jurnal Ilmiah Teknologi Informasi Terapan, 1(2), 62-67.

M. Sanwlani, “F ORECASTING SALES THROUGH TIME SERIES C LUSTERING,” vol. 3, no. 1, pp. 39– 56, 2013.

V. Shrivastava, P. Arya, and M. T. S. Systems, “International Journal of Computing , Communications and Networking Available Online at http://warse.org/pdfs/ijccn04122012.pdf A Study of Various Clustering Algorithms on Retail Sales Data,” 2012.

A. Benet-zepf, J. A. Marin-garcia, and I. Küster, “Clustering the mediators between the sales control systems and the sales performance using the AMO model : A narrative systematic literature review,” vol. 14, no. 2, pp. 387–408, 2018.

Fadli, A. (2011). Konsep Data Mining. Pohon Keputusan, vol. 1, pp. 1-9.

Suprayogi. (2013). Data Mining Clustering. J. Chem. Inf. Model., vol. 53, pp. 1689-1699.

Downloads

Published

2023-05-30

Issue

Section

Articles