Implementation of Data Mining on Froozen Food Sales Results Using K Means Clustering
DOI:
https://doi.org/10.70340/jirsi.v2i2.54Keywords:
Data mining, K Means algorithmAbstract
Maintaining inventory stock so that there are no empty items is one way to maintain customer satisfaction. In today's competitive business world, we are required to always develop our business in order to survive in the competition, especially in sales competition, it requires entrepreneurs to find a pattern that can increase sales and marketing within the company, one of which is by utilizing sales data. Applying clustering data mining techniques so that it can help NCekma Frozen stores in determining strategies for determining frozen food stocks using the K Means algorithm.
Downloads
References
Siregar, M. H. (2018). Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan). Jurnal Teknologi Dan Open Source, 1(2), 83–91. https://doi.org/10.36378/jtos.v1i2.24.
Metisen, B. M., & Sari, H. L. (2015). Analisis Clustering Menggunakan Metode K-Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila. J. Media Infotama, vol. 11, pp. 110-118.
Rohmawati, N., Defiyanti, S., & Jajuli, M. (2015). Implementasi Algoritma K-MEANS dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jurnal Ilmiah Teknologi Informasi Terapan, 1(2), 62-67.
M. Sanwlani, “F ORECASTING SALES THROUGH TIME SERIES C LUSTERING,” vol. 3, no. 1, pp. 39– 56, 2013.
V. Shrivastava, P. Arya, and M. T. S. Systems, “International Journal of Computing , Communications and Networking Available Online at http://warse.org/pdfs/ijccn04122012.pdf A Study of Various Clustering Algorithms on Retail Sales Data,” 2012.
A. Benet-zepf, J. A. Marin-garcia, and I. Küster, “Clustering the mediators between the sales control systems and the sales performance using the AMO model : A narrative systematic literature review,” vol. 14, no. 2, pp. 387–408, 2018.
Fadli, A. (2011). Konsep Data Mining. Pohon Keputusan, vol. 1, pp. 1-9.
Suprayogi. (2013). Data Mining Clustering. J. Chem. Inf. Model., vol. 53, pp. 1689-1699.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Nenna Irsa Syahputri, Siti Sundari, Rismayanti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.