Implementasi Metode K-Nearest Neighbor Untuk Klasifikasi Penyakit Tanaman Mentimun Pada Citra Daun

Penulis

  • Ratna Indah Juwita Harahap Universitas Harapan Medan
  • Sumi Khairani Universitas Harapan Medan
  • Rismayanti Universitas Harapan Medan

DOI:

https://doi.org/10.70340/jirsi.v3i2.123

Kata Kunci:

Cucumber leaf, Pre-processing, GLCM, KNN, Confusion Matrix , Cucumber leaf, Pre-processing, GLCM, KNN, Confusion Matrix

Abstrak

Cucumber is a vegetable that is widely consumed by Indonesian people. However, cucumber plants are susceptible to disease attack which causes substantial yield loss. Examples of disease in cucumber plants are downy mildew, powdery mildew, and cucumber mozaic virus. This disease can be recognized visually because it has a characteristic color and texture. Through an image, information can be learned about the cucumber plant disease. This study aims to build a disease classification system on cucumber leaf images so that it can provide information on the type of disease. The application of the system consisting of pre-processing, feature extraction, classification, and evaluation stages. The pre-processing stages resizes the RGB image and then converts it to Grayscale. The feature extraction stage uses the GLCM (Gray Level Co-Occurence) method. The classification stage uses the K-NN (K-Nearest Neighbor) algorithm. Evaluation stage is a confusion matrix. The results of the cucumber leaf disease classification test used the K-Nearest Neighbor algorithm, produced the best accuracy value by using the neighborhood value k=1 reaching 90%.

Unduhan

Data unduhan belum tersedia.

Referensi

Cahyono B. "Teknik dan Strategi Budidaya Mentimun", Yogyakarta, 2003.

Cucumber plant diseases dataset | Kaggle, 2022.

N. Ismail, M. Rahiman, M. T. I. C. “The grading of agarwood oil quality using k-Nearest Neighbor (k-NN),” 2013.

M. Astiningrum, P. A.-S. I.,“Identifikasi Penyakit pada Daun Tomat Berdasarkan Fitur Warna dan Tekstur,” 2019.

A. Sonita and K. Khairunnisyah, “Aplikasi Pendeteksi Obat dan Makanan Menggunakan OCR (Optical Character Recognition),” J. Inform. Upgris, vol. 4, 2018.

R. Bahri, I. M.-T. INFORMATIKA, “Perbandingan algoritma template matching dan feature extraction pada optical character recognition,” 2012.

T. Aruan, “Identifikasi Jenis Tanaman Jamur Beracun Menggunakan Pendekatan K-Nearest Neighbor,” Skripsi, pp. 1–61, 2017.

R. Widodo et al., “Pemanfaatan Ciri Gray Level Co-Occurrence Matrix (GLCM) Citra Buah Jeruk Keprok (Citrus reticulata Blanco) untuk Klasifikasi Mutu,” vol. 2, no. 11, pp. 5769–5776, 2018.

A. Anwar, S. I.-J. A. I. “Perbenihan sayuran di Indonesia: Kondisi terkini dan prospek bisnis benih sayuran,” 2005.

F. Felix, S. Faisal, T. F. M. Butarbutar, and P. Sirait, “Implementasi CNN dan SVM untuk Identifikasi Penyakit Tomat via Daun,” J. SIFO Mikroskil, vol. 20, no. 2, pp. 117–134, 2019.

E. A. Savory, L. L. Granke, L. M. Quesada-Ocampo, M. Varbanova, M. K. Hausbeck, and B. Day, “The cucurbit downy mildew pathogen Pseudoperonospora cubensis,” Mol. Plant Pathol., vol. 12, no. 3, pp. 217–226, Apr. 2011.

Babadoost, M. "Bacterial spot of cucurbits", Report on plant disease, RPD no. 949, 2012.

Semangun H, "Penyakit tanaman hortikultura di indonesia”, Yogyakarta, 2000.

Semangun H, " Pengantar ilmu penyakit tumbuhan", Yogyakarta, 2006.

Diterbitkan

2024-05-30

Terbitan

Bagian

Articles